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FREQUENCIES MODES OF VIEBMCION OF 

CIRCULAR "S 

By B. Herzog and E. F. MESV 

When subjecte to sufficiently large rab-&l. pressure, a circular 12% 
buckles into a configuration which is governed by a set of nonlinear equa- 
tiona. !the present note considers the frequencies and modes of vibration 
of small amplitude about this configuration. Perturbation techniques a.re 
employed near the buckling point; as buckling proceeds solutions are ob- 
W n e d  through power series exppnelons. 
figuration is radially synrmhtric, no such restriction is imposed on the 
modes of vibration. The analysis is "exact" within the limits of classical 
plate theory and in the sense of a converging series which has been trun- 
cated. 

Although the static buckling con- 

As a by-product of the analysis it is shown, at least within the range 

This suggests that observed secondary buckling phenomsm are not 
of buckling aatplitudes cornsidered, that all the frequencies of vibration 
a.re real. 
traceable to instability of the radiaUy syrmahtric 8tatic configuration. 

11. I"J!RODUC3!I0lfy CREDITS, SYMBOLS 

Introduction 

M o d e r n  engineering structures have been experiencing a very rapid de- 
crease in their vvth icheso ' l  dimension as severe weight (and other) limit- 
ations ham been W o s e d  during recent years .  
tures are used in a postbuckled state, in which the loads sustained a m  
greater than those predicted in the usual "EUler column" sense. 
structures loaded in this 
vlrollprant of forces while subjected to these high static loads. 
The purpose of the present study is to deterrmlnt the.dyz"ic characteristias 
of such a structure, that i8, the natural frequencies and shape8 of the 
modas of vibration of a circular plate as functions of a load parslPater. 

As a consequence m y  struc- 

In addition, 
are frequently expected to sumdve an en- 

If a structure is loaded statically, compressive forces generally 
tend to decrease the frequency of vibration. The stiffbess of the structure 
is thua reduced, and in fact vanishes when the luwest frequency of vibration 
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reaches zero. In  the case of a conservative loading system, t h i s  condition 
is  ident i f ied with "buckling" i n  the sense that the equilibrium is  no longer 
stable. 

The best  known example of such 
e l a s t i c  bax which is  ax ia l ly  loaded. T1y 
simply supported bar, and the square of the frequency of vibration i s  li e r l y  

discusser several examples related t o  vibration and s t ructural  s t a b i l i t y  and 
c i t e s  both theoret ical  and experimental. results. He shows that, i n  general, 
within the A-amexork of l inear  theories, whenever the mode shape of buckling 
and of vibration i n  the presence of axial loads i s  the same, the interaction 
curve between the square of the r quency and some monotonic increasing load 
parameter is  l inear.  Massonnet e37 treats the s a w  subject extensively, but 
selects  problem of greater mathemtical complexity, which he solves by 
approximate means, such as the Rayleigh-Ritz method. 

roblem is  the l a t e r a l  vibration of an 
The mode shape is  sinusoidal f o r  a 

related t o  the  axial force (or  an associated loading parameter). Lur ie  P2T 

The l inear  equa 
t igated e t nsively. t&? ?g)buckling of 
by BrYaJl. 757 Federhofer 
vibrating edge p la te  subjected t o  edge loads and have presented extensive 
results of the interact ion between compressive (and tens i le )  forces and the 
frequency of lateral vibration of the plate.  

ns of the c lass ica l  theory of plates  have been inves- 

and Willers t 7 j  have studied the problem of the 
i r cu la r  p la te  was first studied 

There ex i s t  f e w  exact solutions fo r  the nonli,ne quations of buckled 
plates,  whkh were introduced i n  1910 by von k . ? 8 7  The problem i s  
par t icular ly  d i f f i c u l t  fo r  rectangular plates  where several ap roximate 
methods v o ) b e e n  introduced, such as the one by Marguerre. (97 Bisplinghoff 
and Pian 
length and, i n  some cases, t ha t  of plates af f i n i t e  l e  gth. 

series methods, the p r  blem f a  circular  p la te  subjected t o  lateral load. 
Friedrichs and Stoker 712,137 have used perturbation and power series methods 
t o  solve the problem of the simply supported circular  plate  subjected t o  com- 
pressive rad ia l  loading i n  the plane of the plate .  
writers have been applied b Bodner (14) t o  a clamped edge plate  f o r  the same 

and Stoker t o  study the e f fec t  of very l a r g  
t o  cer ta in  in s t ab i l i t i e s .  Keller and R e i s s  f18 have applied numerical 
methods t o  the problem d i  cussed by Friedrichs and Stoker. 
a re  studied b Alexeev (177 and, as a special  case, i n  a paper by Panov and 
Feodossiev.(l') Masur ('9) has ut i l ized  a stress function space t o  obtain 
a sequence of solutions with e r ror  estimates. 

have t reated the vibration of a rectangular plate  of i n f in i t e  
For the circular  

plate  several more solutions are available. Way (u P has solved, by power 

type of loading. &omberg( 9 5) has used the methods u t i l i zed  by Friedrichs 

ThemeWds of these 

teral loads which give rise 

Similar problems 

I n  a recent paper, Massonnet (20) considers the e f fec ts  of i n i t i a l  cur- 
vature on the natural frequencies of vibration of an edge-compressed, clamped 
edge, c i rcular  plate.  
r ichs and Stoker and then assumes that the mode shape of vibration is  the same 
as tha t  of the s t a t i c  problem, and u t i l i z ing  the Rayleigh-Ritz method obtains 
the approximake frequency of vibration. 

The p la te  is rad ia l ly  compressed (as a result of aerodynamic heating or other 
causes) and buckles in to  a rad ia l ly  symmetric configuration, such as is  trea.ted 

He solves the s t a t i c  problem by the method of Fried- 

The present study i s  concerned with small vibrations of a c i r c u l a  plate.  
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in (12) and (13). With the edges fixed against additional radial displace- 
ments, the buckled plate is now subjected to dynamic lateral loads. 
only sm. l l  additional time-dependent displacements are considered (that is, 
if the resulting equations are linearized with respect to these additional 
displacements), such problems can be handled by the usual spectral analysis 
methods. Informtion is therefore needed regarding the natural frequencies 
and modes of vibration. To obtain this information is the object of the 
present investigation; it may be noted that while the buckled static con- 
figuration exhibits radial symmetry, no such restriction is imposed on the 
dynamlc response. 

If 
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components of membrane strains 
thickness of plate 
components of bending moments, non-dimansional 
lateral surface load on the plate 
time 
components of dynamic membrane strem resultants, non-dimensional 
components of me&rane displacements 
late& displacement. of plate 
flexual rigidity of plate 
Young's modulus of elasticity of plate material 
stress function 
shear modulus of elasticity of plate material 
Bessel functions 
components of bending moments 
components of menibrane stress resultants 
components of static mcpibrane stress resultants, non-dimensional 
radial component of mtzmbrane displacements, non-diarensional 
static lateral displacement of plate, non-dimensional 
puameter influenced by thickness and Poisson's ratio 
perturbation pclrsmeter 
stress function8 associated with aynSmic8 and statics respectively 
mags density of plate mrterial 
membrane loading parameter 
vibration frequency parameter 
Poisson's ratio of plate materied 
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frequency of vibration 
$ Lsplacian operator i n  polar coordinates specialized fo r  radial 

A general two-dimensional Laplacian operator 
dependence 

11. FORMULATIOH OF THE €BOB= 

In what follows we consider the xy plane t o  be ?zhe middle plane of 
the plate,  and z the direct ion of the lateral deflection. The plate  llyly 
be subjected t o  membrane forces i n  the plane of the plate  and t o  lateral 
loads i n  the z direction. The thickness of the plate  is  h. In the  ab- 
sence of body forces i n  the x andl y directions the tvo relevant differen- 
tial equations (8) of lateral equilibrium and compatibility are 

*ere A represents the Lsplacian operator, F io the Airy stress function, 
w is  the lateral deflection of the plate  and p i s  the load per u n i t  area 
applied t o  the lateral surface of the plate.  The flexural r ig id i ty  is  

Eh3 
12( 1-v2)  

D -  

where E i a  the Young's Modulus of Elas t ic i ty  andv is  Poisson's ra t io ,  
while the quadratic operator Q is defined by means of 

w i t h  a coma followed by a let ter representing appropriate differentiation. 

For a moving plate the terms associated w i t h  the i n e r t i a  i n  the plane 
of the plate are neglected i n  conrparison t o  those due t o  the lateral motion;* 
the latter are given by 

a2i? 
P = - P h S  

where p is  the nas i  per unit volume. 

(2.3) 

*For a discussion t o  this point 6- references (U) and(22). 
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Only smll amplitude harmonic vibrations with respect to the static 
configuration of larger amplitude are considered. 
assumption the following partitioning of the stress function F, the dis- 
placements, strains and other quantities is appropriate: 

Consistent with this 

S D iuvt eij = eij + E*eije 

Nij 
- - ~s~ + cTjeiuvt 

(2.4) 

in which eij and Nij are the Cartesian components of the membrane strains 
and forces, while UI is the frequency of vibration and is a id pur- 
meter. The menibrane forces Nij are related to the stress function F by 

and the membrane strains eij to the forces by 

Substitution of the first two of Eqs. (2.4) and of Eq. (2 .3)  in 
Eqs. (2.1) and (2.2) and retaining only those terms which contain E* to 
the power of one or less yields two sets of differential equations, one 
governing the static problem and the other the dynamic problem. These are 

S S S  DMW - Q(F. ,IT ) = 0 
(2.7) 

Since a;U detailed discussions of this plate are for a solid circular 
of outside radius R, the problem is rephrased in terms of the polar one 

coordinates. The static configuration has been shown (12) to be radially 
symmetric, but nonsymmetric dynamic configurations are permitted. Hence, 
all quantities are chosen in the following f o e  without significant loss 

* Henceforth, unless otherwise noted, a summation symbol not having the 
summation limits specified is inte ed to be summed over n from 0 to(-. 
'Phe last term in connection with $ has been added to accommodate a rigid 
rotation; this is discussed in more detail later on. 

5 



I I I 111111 11111D111111111111111 

of generality: 

s $ = u (r) 

$ = o  2 P = c < ( r )  sin nQ + (i) B e  

Fs = FS(r) = IF:(') cos nQ 

in which u and 
tangential directions, respectively. 

represent the displacement components in the radial and 

I n  order to render all pertinent quantities in these equations dimen- 
sionless, we let 

( 2 .  lo) 

2 
where 7 = h2/12(1-v2) . 

By the use of the above expressions the differential equations for the 
static case become 

4 1 (2.1la) v w  - - (QIW1)' = 0 
X 

( 2 .  llb) 

in which $( ) = 1 [x( ) ] 

respect to x. 

and primes designate differentiation with 
X 
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The dyn_amic case for the nth mode* is governed by 

(2.12b) 

In order to state the boundary conditions we rewrite all of the 
qurtntities involved, including moments, membrane forces and strains in 
terms of suitable non-dimensional quantities. We thereby define: 

Similarly the stress-stra,in relationships among the dimensionless quantities 
are : 

(2.14) 

* Separation into modes is possible because of the axial symmetry of the 
static solution. 
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The non-dimensionalized bending moments are defined as follows: 

I? = -D(E) Y 2  (W" + W l )  = - D(E) Y 2  Mxx rr X 

2 1  Y 2  M& = -D(&) (F W' + vW") = D ( E )  MQQ 

For the appropriate boundary conditions it is  convenient t o  separa.te 
the s t a t i c  conditions from those associated with the vibrakion motion. L e t  
the p la te  be simply supported a t  its circumference; t h i s  implies tha t  both 
the deflection and the ra.dia1 moment at  the support a r e  zero. I n  addition, 
e i ther  the membrane displacements o r  s t resses  m u s t  be specified. From a. 
prac t ica l  point of v i e w  the most r e a i s t i c  approach is  t o  prescribe a given 
radial displacement f o r  the s t a t i c  case (corresponding t p  a uniform increase 
i n  temperature with r ig id  supports) and r ig id  support f o r  the dynamic case. 

The boundary conditions governing the solution of the s t a t i c  problem 
are therefore 

B1(W) E W ( 1 )  = 0 

B2(W) (,'I + V W I )  = o  x x=l 

f(1) = - 1% 

(2.16) 

(2.17) 

(2.18) 

Here ;E is  the magnitude of the rad ia l  displacement which i s  required t o  
cause the p la te  t o  buckle i n  the l i nea r  sense; thus the value of X deter- 
mines the extent t o  which the postbuckling domain is penetrated. "his 
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third condition is conveniently rephrased in terms of the stress function 
Since 

Eq. (2.18), after substitution of Eq. (2.14), leads to 

= - XUE (2.19) 

R -  
UE = 7% where 

Following similar reasoning, the boundary conditions for the dynaslic 
equations become 

B1(wn) = 0 (2.a) 

B2(vn) P 0 a (2.21) 

Eq. (2.22) implies the vanishing of the circumferential straiqe 
boundazy. In general, a fourth boundary condition also associatt8 with the 
vanishing of the displacements is needed. 
alone is considered in this paper), this represents, in part, a restriction 
on the permissible rigid body motion and therefore does not appear explicitly 
in the boundary conditions governing # (i.e. it is utilized on ly  when the 
membrane displacement components are computed). 
boundary conditions Eqs .  (2.20) to (2.22) are sufficient for determining V 
and # if n = 0,l; 

at the 

For the case n I 0,l (which 

Conversely, the three 

this will become clear in what follows. 
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111. THE PEEVNRBATION SOLUTION 

In recalling the differential equations.and boundary conditions gover- 
ning the problem, we consider first the static case. 
the following differential equations 

It is required to solve 

v4w - L (#*fWf)r = 0 
X 

and the associated boundary conditions* 

B1(W) = 0 

B2(W) = 0 

B3(@*) = -XUE 

(2. lla) 

(2. llb) 

(2.16) 

(2.17) 

(2.18) 

It is convenient here to partition the stress function such that 

(3.1) #* = + 4 

where the function o0 satisfies the differential equation 

4 no = 0 

and the boundary condition 
(3.2) 

B3(OO> = -uE (3 .3)  

Consequently, the function 4 satisfies the differential equation 

4 1 v # = - - (WfWf)' 
2x 

and the boundary condition 

B3(4) = 0 

* The regularity requirements at the origin are being considered implicitly. 
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The first of these equations represents the usual problem of plane 
e l a s t i c i t y  whose well-known solution f o r  the so l id  disk i s  

where 

- Tx2 a0 - - -  
2 

- v E  T - -  
1-V 

(3 .6)  

and where UE 

the  solution previously obtained by Friedrichs and Stoker fo r  the static 
condition. This i s  necessary because t h e i r  results are presented i n  such 
a form as t o  make d i rec t  application t o  the present paper d i f f i cu l t .  
over, they were able, through a change of the dependent variables, t o  re- 
duce the order of the d i f f e r e n t i a  equations and t o  make them d i rec t ly  
integrable, a t  l e a s t  i n  part. This i s  not possible here since w appears 
expl ic i t ly  i n  the dynamic equations as a result of the ine r t i a  term. 
sequently, it i s  necessary t o  obtain a solution a l so  i n  terms of 
however, the procedure of Friedrichs and Stoker is  being followed. 

se r ies  : * 

is found l a t e r  on. 

Ip order t o  proceed t o  the topic of t h i s  study, we first redevelop 

More- 

Con- 
and @ ; W 

We assume the functions W, 0, and X t o  be expandable i n  a perturbation 

w = EW1 + E3W3 + E5W5 + - ' * 

x = xo + E2X2 + E 4 x4 + -- . .  
H e r e  E is  the perturbation parameter which is  chosen as a monotone 

Substi tuting these perturbation expansions i n  
increasing function whose d i r ec t  significance w i l l  be fixed at  a l a t e r  
point i n  the development. 
the d i f fe ren t ia l  equations and boundaxy conditions and equating coefficients 
of l i k e  powers of c yields a sequence of d i f f e ren t i a l  equations with assoc- 
ia,ted boundary conditions. is the  equation 
whose solution i s  O0 . For example, associa,ted with €0 

For the d i f f e ren t i a l  equation is, by vir tue of Eq. (3 .6 ) ,  

dew, + XoT 

and the  boundary conditions axe 

1 (xw;)' 
X 

0 
(3 .8)  

* It can be shown t h a t  the other terms vanish. 
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This is the l i nea r  eigenvalue problem f o r  the  buckling of the plate  subjected 
t o  compressive edge t ract ion o r  displacemnt 
value of the problem). 
here; we therefore obtain, i n  conveniently norndized form, 

( XoT represents the eigen- 
Only the lowest eigenvalue and mode are of i n t e re s t  

W1 = Jo(ax) - J,(a)  

i n  which a is the smallest root of 

( l+v)J , (a )  + aJ2(a)  = 0 

(3.11) 

and is  related t o  the edge displacement by means of 

a* = T (3.13) 

after se t t ing  X o = l  without loss of generality. 
meaning of E . With Eqs. (3.331, the d u e  of % i s  now 

This choice determines the 

2 
% = ( 1 - V ) T  = ( 1 - v ) ~ ~  (3.14) 

Higher roots of Eq. (3.12) lead t o  a complete s e t  of functions of the 
type of Eq. (3.11); t h i s  s e t  w i l l  be u t i l i zed  fo r  purposes of expansion i n  
subsequent paragraphs. 

For e2 the d i f fe ren t ia l  equation for  0 2 ' i s  

4 1 v O2 = - - (W'W')' 
2x 11 (3.15) 

with the associated boundary condition 

B p 2 )  = 0. (3.16) 

This system is  pa r t i a l ly  integrable, and upon using the regularity conditions 
at the or igin the following expression i n  closed form is obtained through 
the use of familiar recursion relations (24) t 

2 1 a 
X 4x 

(- = - - [J:(a x) - J,(a x) J2 (a x)] (3.17) 

12 



Further integmtion of this expression seems impossible except by substi- 
tution of an infinite series. When this is done and another integration 
performed, the result is 

Another integration is not necessary since the function a2 will not be 
needed explicitly. !he constant C can be determined from B 

d'or e3 the differential equation governing W3 
3' 

is 

with the associated boundary conditions 

This inhomogeneous system is singular in the sense that the associated 
homogeneous system exhibits the nontrivial solution W1. 
either no solution or, if it has a solution, then this solution is not unique 
in that there can be added to it any arbitra.v 
latter case the right hand side must satisfy the orthogonality condition 

It therefore has 

In this multiple of Wl. 

1 r 
J F+X) W1x dx = 0 
0 

which determines the coefficient 

1 
J @'(w1)2dx 1 0 2 1  

l2 = 5; X(W;>*& 

0 

A particular solution of Eqs. (3.19) can now be constructed and the pro- 
cedure continued to determine further perturbation coefficients and func- 
tions. However, as all become apparent in the sequel, there is no need to 
pursue the solution of the equiltbrium problem beyond this point. 

Regarding the vibration of the plate about the static buckled configura- 
tion and the associated equilibrium system of stresses as discussed in the 

* While the choice is theoretically arbitrary, the specific value is 
selected on the basis of convenience of computation. 
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previous paragraphs, it is noted that the method of solution in the dynamic 
case is similar to the one used above and hence only the essential points are 
presented. 

The equations governing the motion of the plate are Eqs.. (2.12), which 
are presented again for the sake of convenience. 
they take the form 

By substitution of Eq. (3.6), 

112 2 2 

;;2 
and (3 - T) 4" = - [; (W'wn')' - w'lwn] 

8ubject t o  the bounde.ry conditions 

and 

(3.2273) 

for n = 0,l. 

"he functions w, 4 and p are now expanded in perturbation series 
utilizing the same parameter E as in the static case, that is 

2 pn = po + E p2 + . - . *  

(3.23) 
Upon substitution of these perturbation expansions* in Eqs. (3.22), 
a new sequence of differential equations is obtained whose solution follows 
procedures analogous to those presented for the static case. 
comes apparent that the partitioning of the stress function @ *  enhances 
the similarity further. 

It also be- 

For EO the differential equation is 

L2(%) (02 - s)2 WE + loT($ - -) n2 wo n - powo n n  = 0 (3.244 
2 X 2 X 

* The fact that 9 andpn are even expansions in E and that is 812 odd 
expansion may be easily verified upon substitution in the relevant equa- 
tions. For the sake of brevity these steps are omitted here. 

14 



w i t h  the rsrociated boundary condition8 

'phi8 linear e i g e ~ u e  pablem admit8 aa infinite set of eigenvalue8 and 
eigenfunctionr and uo (m = 1,2,...) &ere the latter i r  given by 

which 8ati8fie8 Eq. (3.2kb) in which In i r  the modified Besrel function. 
The chamuteriirtio equations is obtained In the wual fashion from the 
boundary conditions Eq. (3 .24~):  

nm 
in which B 1  and p F  are related t o  a and prim by 

nm rs wowo x d x  = 0 s 
U 

0 

It 28 noted tbt while n repmrents the n-er of nodal dimmetera, the 
index m i r  related t o  the nuniber of nodal circle8 appearing in the ribration 
pattern of the plater A rimilrrr for t h e ~  case of a clamped edge plate 
u u  solved by ?eeQsrhofer i n  1935- 

15 
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n 1 For E the differential equation governing the function dl is 

With the associated boundary conditions 

For n = Bthe function #n can be established explicitly; for all other values 
of n it is necessasy t o  resort to numerical integration. 

For e2 the differential equaticm governing the deflection function e 
is 

in which 

and in which associated boundary conditions are 

B1(wF) = 0 

As before, f*(x) must sa.tisfy an orthogonality condition if Eqs. (3.31) are 
to exhibit a solution; after some manipulation this leads to 

1 

" - Pn - - ,  (3.32) c iwpy xdx 
0 

For n -0, numerTcaJ results are readily obtained. In particular 
the value of the rate of change of frequency with respect to the load para- 
meter is desired in the neighborhood of the condition of linear buckling, 
that is 



00 It is noted from Eqs. (3.24) that POo = 0 and Vo = W , as expected 
This i n  turn implies, by comparing Eqs. (3.30) with Eq. t3.15), that bf' = 2 02 
When t h i s  is  substi tuted i n  Eq. (3.32) and Eqs. (3.31b) and (3.U) are con- 
sidered, it follows, after some integrations by par ts  and i n  v i e w  of the 
boundary and regularity conditions, that 

which is  readi ly  evaluated. Thus, f o r  n P @ and m I 1, 

(3.34) 

(3.35) 

It i s  therefore evident that when the  c r i t i c a l  buckling condition is  
reached and the lowest frequency of vibration is  zero, and as the plate  pro- 
ceeds in to  the postbuckled condition, the square of the lowest frequency 
increases i n i t i a l l y  i n  proportion t o  the buckling parameter, t h i s  r a t i o  being 
identified i n  Eq. (3.35). Further calculations with the perturbation method 
become exceedingly cumbersome and are  abandoned i n  favor of the power ser ies  
method of the  next chapter. 
approaches zero since higher order expansions vanish f o r  t h i s  condition. 

However, the present result is  exact as 'il 

17 



3 

I??. THE POWER SWIES METHOD 

Another possible means of solving the system of d i f fe ren t ia l  equations 
presented here i s  t o  develop the solution i n  terms of a power series. 
we borrow the results of Friedrichs and Stoker fo r  the solution of the 
s t a t i c  problem. 
computations represent minor w i a t i o n s  of the i r s .  

Again 

The phrasing is s l igh t ly  different  and some of the numerical 

I n  solving Eqs. (2.U) subject t o  the boundary conditions Eqs .  (2.16), 
(2.17), and (2.19), we express the f'unctions W and Q i n  even power series 
of the coordinate x, tha t  is, 

m 

w = 1 amx 2m 

m=O 

ca 

0 = 1 bmx 2m 

m=O 

(4.1) 

(4.2) 

It can be shown, by substi tution i n  Eqs.  (2.U), tha t  the coefficients ao, 
al, bo, and bl are, at t h i s  point, a rb i t ra ry  and that all of the other co- 
e f f ic ien ts  of the two se r ies  are  given by the  following recursion relation- 
ship6 : 

m-1 
- i ( m - i )  a b i m - i  2m2(m-1) am - 

i=l 

(4.3) 

I n  terms of the coefficients i n  the power series, the previously stated 
boundary conditions become 

m 

z a m  = 0 

0 

1 

XU 
2 

m(2m - 1 - v )  bm = - 3 

(4.5) 

(4.6) 

(4.7) 
1 
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Eq. (4.5) serves t o  determine the coefficient a 0  after the others have 
been computed. Eqs. (4.6) and (4.7) must be solved simultaneously for  the 
values of al and bl. The value of the coefficient bo remins arbitrary,  as 
might be expected since the stress function 0 can i n  general contain as much 
as an arbi t rary l inear  function of the Cartesian coordinates without affect-  
ing the stresses. Once the value of X is specified, it is  therefore possible 
t o  obtain all of the coefficients necessary t o  describe the complete solution 
for  the s t a t i c  case. 

The dynamic case i s  governed by Eqs. (2.12) and associated boundary 
conditions* Eqs . (2.20) t o  (2.22). 

Again the solution of the d i f fe ren t ia l  equations may be expressed as 
power series i n  x. By the usual methods t h i s  leads t o  

and 

m 

m=O 

The recursion relationships f o r  all values of n that evolve from t h i s  
system are, a f t e r  bopping the superscripts f o r  c and d, 

(4.10) 

dm - - - 1 ((a+n-2) f 2 i ( n + a - 2 i )  a . c  1 m - i  
16m(m-1)  (m+n)(m+n-l) i=l 

(4.11) 

* F o r  n 2: 2 the number of boundary conditions increases t o  four, as pointed 
out prevlously. 
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while the coefficients coy clr do, and dl remin, at this point, undeter- 
mined. 

In terms of these power series, the boundary conditions for the dynamic 
problem assume the following form: 

00 

c c m = o  
m=O 

[ (&+n)(=+n-l+v) - yn 2 1% = o 
mi0 

(4.13) 

It can be mrified by examimtion of the recursion relation in the ca.ses of 
n = 0 and n = 1  that d~ does not appear in the problem and this is again 
plausible in view of the remark msde in connection with bo. 

The boundary conditions thus lead to a system of homogeneous linear 
algebraic equations in the three unknown coefficients coy c1, and dl, as 
well 8.6 of the eigenvalue P. The characteristic determinantal equation 
associated with this system is of formidable complexity and has therefore 
not been assembled in explicit form. Nor would any particular benefit be 
derived from this since, for the numerical solution obtained here, the 
appropriate algorithm can be stated in terms of the equations themselves. 

The solution of the system of equations is effected on the digital 
computer. This is achieved by assigning consecutively arbitrary values, say 
(for example) unity to the coefficients coy c1 and dl. 
efficients in the power series expansions are then determined by the recur- 
sion relationships. 
dl, each coefficient in the power series is then the sum of three polynomials 
in p, each of these polynomials being multiplied by the constants coy c 
dl respectively. When this is substituted into the boundary equations t4.12), 
(4.13) and (4.14), the resulting system of equations c a  be written in the 
form 

The remaining co- 

Since a generic term depends linearly upon coy c1 and 

and 

in which the elements of the 3 x 3 square matrix [A] are power series in P ,  
and (b) is the 3 x 1 column mtrix whose elements are c 
cb) is not to vanish trivially, it is necessary and suf%cient that the 
characteristic equation 

cl, and dl. If 

IAI = Q (4.16) 
be satisfied. 
roots represent the required eigenvalues. 

This determinant is equivalent to a power series in p, whose 
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For computational purposes this process must, of course, be truncated; 
this nay be done by terminating the power series for w and jd when the value 
of a coefficient falls below a designated value. 
these coefficients alone is not necessarily indicative of final convergence 
of Eq. (4.16). not 
only reduces the elements of CAI to polynomials in P, but it also affects 
the coefficients in these polynomials. This process itself is convergent 
in the present cnse. 
whose lowest root is found on the computer by standard methods. 

Iiouwver, convergence of 

In fact, truncation of the expansion series for w and 

The resulting characteristic equation is a polynomial, 

Generally, about sixteen terms in the pover series produce sufficiently 
convergent t e r m s  in [A] and it suffices to take five or six terms in the 
characteristic equation to obtsin the roots. 
the postbuckling domsin the size of the numbers involved and the number of 
terms required for the necessary accuracy requires a modification of this 
technique due to the limitations imposed by the available computer. !!!his 
consist8 of an iteration procedure prior to the establishment of the final 
polynomial in p. !!!he matrix LA] is evaluated on the basis of trial values 
for p, and Eq. (4.16) is then satisfied iteratively. 
procedure ie appro-tely eight times longer than by the first method.* 

For very large penetration of 

Computing time of this 

Sltinitschke (a), vho faced a similar computation in connection with a 
problem in shells, has used several power series expansions for different 
parts of the region. Iktching them together, he has required fewer term8 
in each series for convergence. 
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V. REEXL!I!S A.ND DISCUSSION 

The degree of penetration of the postbuckling domain is measured by b 
the ratio of the actual edge displacement to that required for initial in- 
stability. based upon a 
stress ratio. For convenience the results here are expresse9 in terms of X; 
Figs. 4 and 5 show the relation between the two parameters. The -in result 
offered here is the relation between Il(the squared frequency parameter) and 
X. Pig. 1 shows the relation for a symmetric mode (n = 0) and the first mode 

having a nodal disareter (n = 1). The details of this relation in the vicinity 
of X = 1 (that is, near the point of initial instability) a.re given in Fig. 2. 
In Fig. 3 are shown the shapes of the modes of vibration. 
plotting Figures 1, 2 and 3 and further information are given in !Cable I.* 

Friedrichs and Stoker (12, 13) uee a parameter h 

The data used in 

The "ner in which P increases with x in the vicinity of initial 
instability for the symPnetric mode as shown by the power series analysis is 
borne out by the perturbation analysis. From Fig. 2 the numerical value of 
the slope is fifty, which compares well with the results of Eq. (3.35), i.e. 
49.29. It is interesting to observe that after some increase in the fre- 
quency of the nonsynunetric mode is lower than that o f  the symmetric mode. 
Ehmination of the modes for the symmetric case shows that at a value of X 
between 13 and 19 a nodal circle appears for the lowest frequency. 
this value of X the frequency of the axially symmetric mode increases less 
rapidly and eventually becomes again less than that for n = 1. 
of the frequencies is reasonable inasmuch as the nonsylmnetric mode is essen- 
tially inextensional while the symmetric mode is initially extensional and 
consequently the frequencies of the synrmetric mode become greater than those 
for n = 1. Upon the appearance of the nodal circle in the symmetric mode, 
this mode a l s o  becomes essentigiLly inextensional; this may explain why the 
frequency falls again below that for n = 1. 

Near 

This behavior 

Apparently the frequency reaches aa asymptotic value as X is increased. 
It should be noted, however, that for large values of X the accuracyMc of 
the results becomes less certain; moreover, the result8 themselves lose 
meaning since, in the limit, the plate is stretched as a membrane exaept for 
a narrow boundary layer at the edge, where also large bending stresses occur. 
Whether a plate caa reach such a state is subject to question on practical 
grounds. The effect of initial imperfections, the onset of plastic yield- 
ing or secondary buckling, and several other questions make the theoretical 
idealized results appear somewhat academic for sufficiently Large values of h . 

An apparently significant observation is that, at least within the range 

x.>1.  
of the present computations, the frequency of vibration does not return to zero 
for 
hence the buckled configuration is stable if only expansions up to the second 
power in the t e r m s  representing the additional neighboring deflections are 
included. 
modes. 
buckling 

This implies that the potential energy is positive definite and 

It appears likely that this is t m  also in relation to higher 

cannot be explained in term of a simple branch point. 
C 118 qwntly the experimentally observed phenomenon of secondary 

Perhaps 

* All calculations a.re based upon the value of Poisson's ratio v = .318. * "Accuracy1' is defined here to be the ratio of the largest violation of 
boundary condition Eq. (2.20) to the imum deflection. This ratio ranges 
from an optiBPun of 10-8 to a ~~poorl~ 10- "k . 
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there exists the possibility of a discontinuous snap-through to a position 
of luwer potential energy. 
introduced in Ref. (19)  loses its positive definite character, as is indeed 
the case here. 
larity with that of buckling of certain types of shells. 

This becomes possible when the quadratic form 

The problem of secondary buckling therefore shows great simi- 
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x 
1.000U1 
1 00009 
1000017 
1000034 
1.00067 
;.00101 
1000402 
1000887 
1.01574 
1.02462 
1.03552 
1 0  04846 
1006343 
1008029 
1 09886 
1.41138 
1.98215 
2.91311 
40 15896 
4042706 
6.31125 
7.11236 
9.57456 

11 025514 
130 86542 
19.60922 
29.17450 
33.88582 
42429802 
5 0 0  15607 
61.01744 
70.96683 

TABLE I 

FEIEQUENCY PARAMETERS p FOR n = 0, n = 1 FOR 
vmrous VALUES OF A, +, 

S 
x 

1.UUOUU 
1.uubu1 
l.UOU03 
1.UOCi05 
1. 000 10 
1oOOCi15 
lobO(J59 
1oOO129 
1. ~ 0 2 2 9  
1eUd359 
lob0517 
lobo705 
1.u0923 
1001 168 
1oU1437 
1.05927 
1.13931 
1.26498 
1.42499 
1045835 
le68353 
1. 77494 
2.04258 
2.21547 
2.47114 
2.99070 
3.76396 
40 11459 
40 70397 
5022U66 
5.89279 
6.47418 

P 
n =.O n = I  
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Figure 1. The Relation Between the Frequency 
P-ter p and the Load Parameter X. 
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